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Abstract: Galectins, a family of glycan-binding proteins, are well-known for their role in shaping the
immune microenvironment. They can directly affect the activity and survival of different immune cell
subtypes. Recent evidence suggests that galectins also indirectly affect the immune response by bind-
ing to members of another immunoregulatory protein family, i.e., cytokines. Such galectin-cytokine
heterodimers, here referred to as galectokines, add a new layer of complexity to the regulation
of immune homeostasis. Here, we summarize the current knowledge with regard to galectokine
formation and function. We describe the known and potential mechanisms by which galectokines
can help to shape the immune microenvironment. Finally, the outstanding questions and challenges
for future research regarding the role of galectokines in immunomodulation are discussed.
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1. Introduction

The straightforward mission of the immune system is to protect an organism from
external and internal threats. However, the execution of this mission is far from straight-
forward. It relies on complex biological processes involving different organs, cells, and
proteins that aim to recognize, adapt, and neutralize threats. Consequently, a dysfunctional
or inadequate immune response can result in pathogen-induced infectious or non-infectious
diseases like autoimmune disorders, diabetes, rheumatoid arthritis, and cancer. Regard-
ing the latter, recent immunotherapy developments support the idea that the immune
system is capable of eradicating malignant cells [1]. At the same time, the limited effec-
tiveness of immunotherapy also illustrates our current lack of insight into the diverse
immuno-modulatory mechanisms that can contribute to immune dysfunction [2,3]. Thus,
uncovering the full spectrum of mechanisms that shape an adequate immune microenvi-
ronment remains a significant scientific challenge.

Research over the last two decades has revealed that galectins constitute a family of
glycan-binding proteins that play a crucial role in immune homeostasis [4]. In 1995, Perillo
and coworkers showed that galectin-1 could induce apoptosis of activated human T cells
via interactions with N-glycans on CD45 [5]. Toscano and collaborators further established
the relevance of glycosylation in galectin-mediated immunomodulation. They observed
that distinct T helper cell stimuli resulted in different glycosylation of specific T helper
subsets [6]. Consequently, galectin-1 could skew the T helper balance since Th2 cells were
less susceptible to galectin-1-induced cell death as compared to Th1 and Th17 cells [6]. The

Biomolecules 2022, 12, 1286. https://doi.org/10.3390/biom12091286 https://www.mdpi.com/journal/biomolecules

https://doi.org/10.3390/biom12091286
https://doi.org/10.3390/biom12091286
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com
https://orcid.org/0000-0003-4006-8010
https://orcid.org/0000-0002-9955-9730
https://orcid.org/0000-0002-6146-1842
https://doi.org/10.3390/biom12091286
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com/article/10.3390/biom12091286?type=check_update&version=2


Biomolecules 2022, 12, 1286 2 of 18

association between immune cell glycosylation and galectin-mediated immunomodulation
is broadly recognized [4,7].

Interestingly, recent studies have identified additional mechanisms by which galectins
can control specific immune cell functions. These mechanisms involve a connection between
galectins and cytokines, another family of proteins with immunoregulatory activity [8,9].
For example, many studies have shown a reciprocal relationship between galectins and
cytokines with regard to expression regulation and protein secretion [10–14]. In addition,
emerging evidence indicates that galectins and cytokines can also directly interact and
form heterodimers. Such galectin-cytokine heterodimers -here referred to as galectokines-
can affect the activity of both proteins, indicative of a mechanism that extends beyond
transcriptional regulation [15–17]. These findings add a new layer of complexity to the
regulatory mechanisms that shape the immune response.

The current review provides an overview of the intricate relationship between galectins
and cytokines. We discuss the functional consequences of galectokine formation, focusing
on immunomodulation. In addition, we highlight the outstanding research questions and
challenges concerning unraveling the role of galectokines in (immune) cell biology.

2. Cytokines and Galectins
2.1. The Cytokine Protein Family

Cytokines constitute a large family of (immuno)regulatory proteins, including in-
terferons, interleukins, chemokines, lymphokines, and the tumor necrosis factor family
(Figure 1a). These relatively small soluble proteins (±5–20 kDa) can be expressed and
recognized by almost every cell type, and they can exert paracrine, autocrine, and endocrine
functions [18,19]. The regulatory pathways controlling cytokine expression are complex.
Important initiators are so-called pattern recognition receptors (PRR) which can recognize,
e.g., pathogens, damaged or dying cells. Downstream PRR pathways that subsequently
trigger cytokine expression include NF-κB signaling, MAPK signaling, TBK1/IRF3 sig-
naling, and inflammasome signaling [20]. Subsequently, cytokine receptor activation can
control the expression and secretion of other cytokines via a plethora of signaling pathways,
including the above, as well as Jak/STAT signaling, PI3K/AKT, and others [21–24].

To initiate responses, cytokines bind to a broad panel of transmembrane receptors
(Figure 1b), some of which are specific for a single cytokine, while others are more promis-
cuous [25–28]. Since cytokine receptors are also broadly expressed, cytokines can show
pleiotropic activity toward different cell types as well as complementary or redundant
activity toward specific cells [25,26]. The pleiotropic and redundant activity allows cy-
tokines to display both stimulatory and inhibitory effects. These effects depend on many
factors, including the microenvironment, the timing of the release, receptor density, and the
presence of competing or synergistic elements. Regarding the latter, many soluble cytokine
receptors have been described that can scavenge cytokines, thereby affecting their activity
on cell surface cytokine receptors [29–32].

Over the past 40 years, extensive research on cytokine function and activity has
identified these versatile proteins as essential players in nearly every biological field,
particularly in immunology [21,33–35]. For example, T helper (Th) cells are known to be
effective cytokine producers but with apparent differences between the specific subtypes.
More specifically, Th1 cells are known for the production of proinflammatory cytokines,
including interferon (IFN)-γ, interleukin (IL)-2, tumor necrosis factor-alpha (TNF-α,) and
granulocyte-macrophage colony-stimulating factor (GM-CSF). On the other hand, Th2-cells
are characterized by the production of anti-inflammatory cytokines like IL-4, IL-5, IL-9,
IL-10, and IL-13 [36]. In addition, immune cells can communicate and regulate each other’s
function and/or activity through cytokine secretion. For example, IL-4 can induce the
development of Th2 cells on the one hand and inhibit the expression of proinflammatory
cytokines like IL-1, TNF-α, IL-6, and CXCL8 on the other hand. In addition, IL-2 generates
cytotoxic T cells but is also a driver of graft-versus-host disease. At the same time, IFN-γ is
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essential in the immune response against intracellular pathogens but can also underlie the
development of autoimmune disease [36].
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Figure 1. The cytokine protein family. (a) Schematic representation of the cytokine superfamily
and the main subfamilies. For each subfamily, the structure of a representative member is shown.
IFN-γ (PDB: 1HIG); IL-10 (PDB: 2ILK); IL-2 (PDB: 1M47); CXCL4 (PDB: 1F9Q); TNF-α (PDB: 4TSV).
(b) Schematic representation of the different cytokine receptor families with a cartoon of the general
domain structure (in different colors for the different families) and some key cytokine ligands below.

The examples above only scratch the surface of the complex signaling networks involv-
ing cytokines. A full description of immunoregulation by cytokines can fill entire textbooks
and is beyond the scope of this review. It suffices to conclude that cytokines are generally
considered one of the key protein families that shape and control the immune response.
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2.2. The Galectin Protein Family

Galectins, formerly S-type lectins, are a widely expressed class of lectins, i.e., carbohydrate-
binding proteins. Members of the galectin protein family are evolutionarily conserved, shar-
ing a specific amino acid sequence motif in their carbohydrate recognition domain (CRD)
and a binding affinity -not exclusive- for β-galactosides [37,38]. The evolutionary-conserved
CRD [39] comprises approximately 130 amino acids which are organized in five- and six-
stranded antiparallel β-sheets oriented in a β-sandwich configuration (Figure 2a) [40,41].
Although galectins can bind to a wide range of glycan ligands, each galectin has a different
glycan-binding preference which contributes to their specific biological activities [42,43].
At the same time, since their glycan ligands are found on many cell types, and different
galectins can bind the same ligands, they can show pleiotropic and redundant activity,
similar to cytokines.

The members of the galectin protein family are numbered sequentially, following the
order of discovery. However, based on the structural organization of the CRD, galectins are
generally classified as (i) prototypical galectins; containing a single CRD that may associate
as homodimers (galectin-1, -2, -7, -10, -11, -13, -14, and -15), (ii) chimeric type galectins;
with a single CRD and the ability to form oligomers through an N-terminal polypeptide tail
(galectin-3), and (iii) tandem-repeat galectins; consisting of two distinct CRDs connected by
a 50–70 amino acid long linker region (galectin-4, -8, -9, and -12) (Figure 2b) [41,43,44].

Regulation of galectin expression involves different triggers and signaling pathways,
e.g., PRR-mediated PI3K/IRF3 signaling [45,46], NF-κB signaling [47,48], HIF1α signal-
ing [49], and cytokine-mediated signaling (see Section 3.2 below).

It has been found that galectins can exert biological functions both intra- and extra-
cellularly (Figure 2c) (For a concise overview, see [40]). Intracellularly, galectins mainly
engage in glycan-independent interactions with different cytoplasmic and nuclear pro-
teins to regulate, e.g., signaling pathways, pre-mRNA splicing, apoptosis, and the cell
cycle [40,50,51]. Despite the lack of a classical secretion signal and a yet-to-be-resolved
secretory mechanism, galectins are also found on the cell surface and in the extracellular
environment. Here, galectins can enable signaling by binding to glycans on cell surface
receptors, thereby regulating, e.g., the clustering and/or retention of cell surface recep-
tors [52,53]. In addition, extracellular galectin-glycan interactions can facilitate cell-cell
interactions and cell-extracellular matrix adhesion [54]. Thus, while cytokines mainly
engage in protein-protein interactions with their respective receptors, galectins are capable
of binding to target proteins directly or via glycans on target proteins. The latter affects
their functionality as glycosylation is a dynamic process.

In line with their versatile functionality, galectins have been linked to a broad range
of (patho)physiological processes, including pregnancy [55–57], vascular biology [58],
platelet biology [59], cancer [7], and immune homeostasis [4,60]. Their role in the latter
involves regulating both immunosuppressive and immunostimulatory programs [4]. For
example, galectins can serve as pattern recognition receptors by binding to glycans on
the surface of pathogens and microorganisms. Translating alarming signals into an innate
immune response can help resolve acute inflammation [61–63]. Only recently, it was
shown that macrophage-derived galectin-9 binds LPS on gram-negative bacteria to enhance
bacterial opsonization and stimulate innate immunity [57]. In addition, by interacting with
glycoproteins on the surface of specific immune cell types, galectins can, e.g., control the
activation, signaling, and survival of T cells, modulate the cytokine balance, shape the
B cell compartment, and mediate the suppressive activity of regulatory T cells (for an
extensive review see [4]). Known receptors involved in these regulatory functions include
several checkpoint proteins, e.g., PD-1, Tim-3, and VISTA [64–66]. As such, galectins are
now considered immune checkpoint proteins [67]. While an in-depth description of the
mechanisms of immunomodulation by galectins is beyond the scope of this review, it is
evident that galectins are nowadays considered an essential immunomodulatory protein
family that shows distinct but similar activity compared to cytokines.
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Despite the clear functional parallels between galectins and cytokines, the two fami-
lies have been mainly considered as two distinct immunoregulatory families. However,
increasing evidence suggests a close relationship between galectins and cytokines, and this
involves reciprocal expression regulation but includes direct galectin-cytokine interactions
that have functional consequences. The following paragraphs will further discuss these
direct and indirect relationships between the two protein families.

Biomolecules 2022, 12, x FOR PEER REVIEW 5 of 19 
 

description of the mechanisms of immunomodulation by galectins is beyond the scope of 

this review, it is evident that galectins are nowadays considered an essential 

immunomodulatory protein family that shows distinct but similar activity compared to 

cytokines. 

Despite the clear functional parallels between galectins and cytokines, the two 

families have been mainly considered as two distinct immunoregulatory families. 

However, increasing evidence suggests a close relationship between galectins and 

cytokines, and this involves reciprocal expression regulation but includes direct galectin-

cytokine interactions that have functional consequences. The following paragraphs will 

further discuss these direct and indirect relationships between the two protein families. 

 

(a) 
 

(b) 

 

(c) 

Figure 2. The galectin protein family. (a) Cartoon of the conserved galectin carbohydrate recognition 

domain based on the crystal structure of galectin-1 (PDB: 3OYW). The CRD consists of two β-sheets 

that are slightly bent. The convex side consists of 5 antiparallel strands (F1–F5; in yellow) and the 

concave side of 6 antiparallel strands (S1–S6; in blue). Carbohydrate binding occurs at the concave 

side and involves several conserved amino acids in S4–S6. The inset shows the organization of the 

different β-sheets within the amino acid sequence in relation to their location in the convex (F) or 

concave (S) sheet. (b) Schematic representation of the three galectin subgroups and their respective 

members based on structural features. While heterodimerization can occur, only homodimers are 

shown for clarity. (c) Schematic representation of the (extra)cellular location of galectins. In the 

Figure 2. The galectin protein family. (a) Cartoon of the conserved galectin carbohydrate recognition
domain based on the crystal structure of galectin-1 (PDB: 3OYW). The CRD consists of two β-sheets
that are slightly bent. The convex side consists of 5 antiparallel strands (F1–F5; in yellow) and the
concave side of 6 antiparallel strands (S1–S6; in blue). Carbohydrate binding occurs at the concave
side and involves several conserved amino acids in S4–S6. The inset shows the organization of the
different β-sheets within the amino acid sequence in relation to their location in the convex (F) or
concave (S) sheet. (b) Schematic representation of the three galectin subgroups and their respective
members based on structural features. While heterodimerization can occur, only homodimers are
shown for clarity. (c) Schematic representation of the (extra)cellular location of galectins. In the
extracellular environment and cell surface, galectins can interact with glycoconjugates (yellow-
lightblue) to facilitate, e.g., cell–ECM and cell–cell interactions. In addition, galectins can mediate
interactions between molecules (purple / brown) in the cell membrane. In the cytosol and nucleus,
galectins can engage in (mostly) glycan-independent protein/protein interactions involved in, e.g.,
signaling and mRNA splicing. (Adapted from [58]).
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3. Indirect Relationship between Galectins and Cytokines

As evident from the above, both cytokines and galectins play key roles in regulating the
activity and function of immune cells. Since their immunoregulatory function is dependent
on protein availability and levels in the microenvironment, it has been anticipated that
members of each family can indirectly regulate the expression and/or secretion of the other.
Indeed, summarized below, there is ample evidence for a reciprocal relationship between
galectin and cytokine expression regulation.

3.1. Galectin-Mediated Effects on Cytokine Levels

Many studies have reported on the effects of galectins on the secretion of both pro-
and anti-inflammatory cytokines by different (immune) cell types (See also [9]). Since it
is not feasible to cover all the literature on this topic in the current review, we present a
selection of findings to illustrate how cytokine levels are affected by different galectins. With
regard to galectin-1, this galectin has been shown to target different immune cells and to
display broad anti-inflammatory and pro-resolving activities, including, e.g., inhibition of
eosinophil and neutrophil trafficking, modulation of T cell function, induction of tolerogenic
dendritic cells, or modulation of macrophage polarization [68–70]. These activities are
usually accompanied by galectin-1-dependent modulation of cytokine expression/secretion.
For example, galectin-1 was found to shift the balance of cytokines secreted by T cells; it
favors IL-10 and inhibits IFN-γ expression, consequently inhibiting T cell activation and
inducing a shift from a Th1 to a Th2 type of response [71–73]. Also, dendritic cells exposed
to galectin-1 acquired an IL-27-dependent regulatory function, promoting IL-10-mediated
T cell tolerance with decreased IFN-γ levels [74]. In line with this, the lack of galectin-1
expression in B cells reduced IL-10 expression upon anti-CD40 stimulation, while TNF-α
expression was increased [69]. At the same time, in macrophages, galectin-1 reduced the
secretion of proinflammatory cytokines (TNF-α and IL-1β) as well as the anti-inflammatory
IL-10 and the pleiotropic IL-6 [75,76]. In line with the above, mice deficient in galectin-1
expression exhibit a hyperinflammatory phenotype characterized by increased secretion
of proinflammatory cytokines, such as IL-12 or TNF-α, and reduced secretion of anti-
inflammatory cytokines, such as IL-10 [77–80]. Consequently, treatment with galectin-1
was found to exert anti-inflammatory activity and reduce the severity of different animal
models of acute and chronic inflammation, e.g., experimentally induced colitis [81,82],
concanavalin A-induced hepatitis [83] or influenza A virus acute lung injury [84].

Similar to galectin-1, a shift in cytokines from a Th1 to a Th2 phenotype has been
observed in response to galectin-2. In activated T cells, galectin-2 was found to inhibit
the production of IFN-γ and TNF-α and simultaneously increase the secretion of IL-5
and IL-10 [85]. In monocytes and macrophages, galectin-2 induced a proinflammatory
phenotype, increasing the expression of proinflammatory genes, including IL12p40, TNF-α,
IL-6, and IFN-β [12,86]. In accordance, galectin-2 stimulation of macrophages resulted
in gene transcription and presentation of surface proteins consistent with a polarized M1
phenotype. These effects were carbohydrate-binding independent and mediated through
the CD14/toll-like receptor (TLR)-4 pathway [86]. Of note, galectin-2 treated monocytes
also showed increased IL-10 secretion [4], which mimics the above observation that galectin-
1 simultaneously decreased pro- and anti-inflammatory cytokines. Conversely, inhibition
of galectin-2 by specific nanobodies was found to reduce the expression of inflammatory
cytokines and polarize macrophages toward an anti-inflammatory phenotype, leading to
decreased atherosclerosis in hyperlipidemic mice [87,88].

Galectin-3 has also been shown to exert many modulatory functions in the (tumor)
immune microenvironment, e.g., reducing tumor-infiltrating lymphocytes, suppressing T
cell activation, and inhibiting the expansion of plasmacytoid DCs [89]. Moreover, a role for
galectin-3 has been described in several infectious, inflammatory, and autoimmune diseases
(for an extensive review, see [90]). Like galectin-1 and galectin-2, the regulatory functions
of galectin-3 include modulation of cytokine expression and secretion. For example, cell-
associated galectin-3 was found recently found to trigger the release of secretion of IL-4
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and IL-13 from basophils [91] as well as the secretion of IL-6 and TNF-α from dendritic
cells (both plasmacytoid and myeloid) [92]. Likewise, galectin-3 was found to induce
the secretion of IL-6 and TNF-α, as well as of GM-CSF, CXCL8, CCL2, CCL3, and CCL5
from fibroblasts [93]. A largely overlapping response was also observed in galectin-3
treated pancreatic stellate cells [94]. In particular, the induction of IL-6 appears to be a
typical response to galectin-3, as Silverman and coworkers showed that galectin-3 was
required for the induction of IL-6 expression in bone marrow mesenchymal stem cells [95].
Likewise, galectin-3 was described to induce the secretion of IL-6, G-CSF, and GM-CSF
from endothelial cells [96,97]. Regarding the latter, comparable results were obtained with
galectin-2/-4/-8, indicating that the observed response is not restricted to galectin-3 [10].
Indeed, it has been shown in a TCR mutational colitis mouse model that galectin-4 can
trigger IL-6 expression/secretion from activated CD4+ T cells [98]. This was dependent
on distinct intestinal inflammatory conditions, and the experimental model analyzed [98],
which could explain why Paclik and coauthors in a wild-type colitis model demonstrated
that galectin-4 reduced the secretion of IL-6 as well as TNF-α, CXCL8, IL-10, by activated T
cells [99]. Since it has been shown that blocking galectin-4 in colorectal cancer cells induced
the release of IL-6 and other cytokines, including CXCL1, CCL2, CCL5, and CXCL10 [100],
it is tempting to speculate that these cytokines are responsible for the effects of galectin-4
on immune cells.

The effect of galectin-7 on cytokine expression and/or secretion is still poorly studied.
Luo and collaborators showed an effect of galectin-7 on the Th1/Th2 balance. The authors
found that unstimulated T cells did not respond to galectin-7, while activated CD4+ T cells
expressed higher levels of IFN-γ and TNF-α while IL-10 levels were reduced [101].

Galectin-8 has also been shown to trigger cytokine expression and release in different
cell types (For a recent review, see [102]). For example, galectin-8 was described to induce
the proliferation of resting T cells [103,104] which was accompanied by increased expression
of IL-2, IFN-γ, and IL-4 [104]. The galectin also triggered B cell proliferation and the
production of IL-6 and IL-10 [105]. At the same time, galectin-8 was found to induce
cell death of activated T cells and/or hamper the proliferation of activated T cells via
increased IL-10 and CTLA-4 expression by regulatory T cells [103,106]. Bone marrow-
derived dendritic cells treated with galectin-8 also showed increased secretion of many
cytokines, including IL-2, IL-3, IL-6, IL-13, TNF-α, CCL2, CCL12, G-CSF, and GM-CSF [107].
In line with this, galectin-8 knockout mice displayed a systemic reduction of expression of,
e.g., IL-6, TNF-α, and MCP-1 [108]. Recently, it was hypothesized that galectin-8 could also
enhance the development of the cytokine storm observed in COVID-19 patients [102].

The effects of galectin-9 on cytokine production and secretion can be both stimulatory
and inhibitory. The dual activity appears to depend on the cellular localization of galectin-9
and the respective galectin-9 receptors, particularly Tim-3 (transmembrane immunoglob-
ulin mucin domain 3). For example, galectin-9-treated Th1 cells were shown to undergo
apoptosis as a result of the galectin-9/Tim-3 interaction [109,110]. The reduced numbers
of Th1 cells resulted in reduced production of IFN-γ and, consequently, inhibition of the
immune response [110,111]. However, it was found that, after a wave of T cell apoptosis,
galectin-9 can activate and expand Th1 cells and shift the CD4+/CD8+ balance towards
a CD4+ phenotype [112]. The resulting activated (helper) T cells affected cytokine levels
by producing proinflammatory cytokines IL-2 and IFN-γ [112]. In line with this, it was
observed that galectin-9/Tim-3 could generate a Th1 response by increasing the expression
of proinflammatory cytokines like TNF-α by monocytes and dendritic cells [109]. After this
response, galectin-9 can trigger Tim-3 on Th1 cells to cease the immune reaction [97]. Simi-
larly, Ma et al. described how the galectin-9/Tim-3 interaction could change the production
of IL-12 and IL-23 in monocytes and thereby affect the Th1- and Th17 response [110]. Intra-
cellular galectin-9 induced IL-12 expression, which induced IL-2 and IFN-γ expressions to
promote the Th1 response. At the same time, galectin-9 can inhibit Tim-3 and IL-23 gene
expression, thereby reducing the differentiation of Th17 cells and regulatory T cells [110].
Of note, also independent of Tim-3, galectin-9 can induce the secretion of IFN-γ by Th1
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cells and NK cells, as well as TNF-α by Th2 cells [113–115]. In addition, it was recently
reported that galectin-9 facilitates the trafficking of cytokines to the cell surface in dendritic
cells. Galectin-9 depletion resulted in the accumulation of cytokine-containing vesicles in
the Golgi complex that eventually underwent lysosomal degradation [116].

It is evident that galectins affect the levels of pro- and anti-inflammatory cytokines.
Of note, this regulation extends beyond immune cells as we and others have shown that
galectins can also trigger the release of cytokines from non-immune cells, like platelets [11],
fibroblasts [93], pancreatic stellate cells [94], endothelial cells [96,97]. In addition, it should
be noted that most research explores how a single galectin affects a preselected set of cy-
tokines commonly considered key regulators of pro- and anti-inflammatory responses. As
such, the current findings are somewhat biased. Additional research combining different
galectins and evaluating a broader spectrum of cytokines will provide a better understand-
ing of how galectins can affect cytokine levels in the (immune) microenvironment.

3.2. Cytokine-Mediated Effects on Galectin Levels

While the previous section provides ample evidence that galectins can trigger the
release of cytokines by different cell types, it has also been shown, albeit less extensive, that
cytokines can regulate the expression and secretion of galectins. For example, Imaizumi
et al. showed that the proinflammatory cytokine IFN-γ stimulated the expression and
production of galectin-9 in vascular endothelial cells, while the anti-inflammatory IL-4
did not [14,117]. The IFN-γ-induced galectin-9 expression mediated interactions between
endothelial cells and eosinophils [14]. We also observed that different cytokines, including
IFN-γ, triggered the expression of specific galectin-9 splice variants in endothelial cells. In
our study, the anti-inflammatory IL-10 also induced galectin-9 expression, albeit to a lesser
extent than IFN-γ, while other cytokines (IL-1, TNF-α, VEGF) had no or a slightly inhibitory
effect [13]. Recently, Carreca and coworkers reported that secretion of galectin-9 by NK
cells was increased upon treatment with IFN-α [118]. However, since IFN-α also induced
IFN-γ, the observation could be partly secondary to IFN-γ. In line with this, IL-2/IL-15
treatment of NK cells did not induce the secretion of IFN-γ and galectin-9 [118].

In mesenchymal stem cells, the expression of galectin-9 could also be induced by
combined treatment with TNF-α and IFN-γ, as demonstrated by Kim and collaborators.
The authors concluded that TNF-α/IFN-γ-induced galectin-9 is involved in immuno-
suppression since galectin-9 was shown to induce apoptosis of activated Th1 and Th17
cells, thereby altering the cytokine balance to a more suppressive phenotype [119]. No-
tably, while galectin-1 expression was not induced in the mesenchymal stem cells by
TNF-α/IFN-γ [119], both cytokines have been reported to induce galectin-1 expression
in endothelial cells [120]. All this indicates that the cytokine-induced changes in galectin
expression/secretion are cell-type specific and can act as a mechanism to potentiate or
hamper an immune response. In line with this, IFN-γ (but not IL-4) was shown to induce
galectin-9 expression in fibroblasts resulting in increased eosinophil adhesion [121]. At
the same time, it triggered galectin-9 secretion from mesenchymal stromal cells, which
contributed to the suppression of T cell proliferation [122].

Collectively, these findings show that cytokines can influence galectin levels by af-
fecting protein expression and/or secretion. At the same time, the current studies likely
represent only the tip of the iceberg as it can be anticipated that many cytokines will
affect galectin expression because of their ability to induce cellular functions in which
galectins play a role, e.g., migration, proliferation, and survival. In addition, the effects
of different cytokine combinations and levels are still poorly understood. This is rele-
vant since the (immune) microenvironment is characterized by a complex mix of different
galectins and cytokines that exert different effects on different cell types. Thus, a significant
future challenge is to unravel the reciprocal regulation of expression and secretion by
galectins and cytokines.



Biomolecules 2022, 12, 1286 9 of 18

4. Direct Interactions between Galectins and Cytokines

The findings above show that galectins and cytokines can indirectly influence each
other’s activity by affecting expression and secretion levels. As already indicated, under-
standing the complex mutual expression regulation provides a significant challenge for
future research. This is further complicated by recent findings showing that galectins and
cytokines can also directly affect each other’s function and activity by forming heterodimers.
As such, galectin-cytokine heterodimers, here further referred to as “galectokines”, add
yet another layer of complexity to the mechanisms by which both protein families can
control and shape immune responses. The following paragraphs will further describe
the recent evidence of galectokine formation, its functional consequences, and possible
mechanisms of action.

4.1. Galectokines

The possibility of direct interaction between galectins and cytokines was reported in
2004 by Ozaki et al. They found that intracellular galectin-2 could bind to lymphotoxin-
alpha (also known as tumor necrosis factor beta) and thereby increase cytokine secre-
tion [123]. Two years later, we identified galectin-1 as the functional receptor for the
angiogenesis inhibitor anginex, a synthetic peptide designed to mimic the structure shared
by different endogenous angiostatic proteins, including chemokines CXCL8 and CXCL4
(platelet factor 4) [124,125]. In a follow-up study that showed that the binding of anginex
increased the galectin-1 binding affinity for specific glycan ligands up to a thousand-
fold, it was stated that “ . . . it is hard to believe that an artificial peptide can show such
dramatic effects without speculating that there is a natural counterpart in vivo.” [126].
Indeed, recently we provided evidence that CXCL4 can heterodimerize with galectin-1
while CCL5 heterodimerizes with galectin-9 [17]. These findings corroborated other studies
that recently reported on galectin-cytokine interactions, e.g., galectin-3/IFN-ã [15] and
galectin-3/CXCL12 [16]. All these findings indicate that both protein families, which were
considered to act distinct from each other, can team up to extend their biological function-
ality. Regarding the latter, the formation of galectokines appears to induce bidirectional
effects, i.e., galectins can affect cytokine activity, and cytokines can affect galectin activity.

4.2. Effects of Galectokine Formation on Cytokine Function

As described previously, cytokines trigger cellular responses via binding to specific
transmembrane receptors. A common feature of cytokine-mediated signaling is the ability
of cytokines to facilitate receptor dimerization or clustering to trigger intracellular signal-
ing [25,26]. In addition, dimerization or multimerization of cytokines themselves can affect
their ability to trigger receptor signaling, particularly chemokine-mediated activation of
G-protein coupled receptors [27,127,128]. Consequently, cytokines must be freely available
in the microenvironment to engage with each other or their receptor. Interestingly, recent
findings suggest that cytokine availability can be influenced by galectokine formation, in
which galectins act as cytokine scavenger molecules. Evidence for such a scavenger role
was provided by Gordon-Alonso and coworkers, who demonstrated that extracellular
galectin-3 could capture IFN-γ as well as IL-12 in the microenvironment [15]. The interac-
tion was glycan-dependent and hampered the ability of IFN-γ to trigger the expression of
the anti-inflammatory chemokines CXCL9 and CXCL10 in melanoma tumor cells. Since
both chemokines are known to regulate the recruitment and localization of anti-tumor
immune cells, capturing IFN-γ by extracellular galectin-3 could provide a means of tumor
immune escape. Indeed, blocking galectin-3 in a murine tumor model increased CD8+
T cell infiltration, which was linked to an increase in IFN-γ mediated chemokine expres-
sion [15]. Notably, since many endogenous cytokines are glycosylated, it was suggested
that other galectins might bind different cytokines to regulate their activity. Indeed, it has
been shown that cytokine glycosylation can affect cytokine activity [129,130]. However,
to what extent this involves glycosylation-dependent galectokine formation and the full
spectrum of glycosylation-dependent galectokines awaits further investigation.
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More recently, Eckardt and collaborators provided additional evidence of the im-
munomodulatory effect of galectokine formation. The authors performed interaction
screens using a broad panel of chemokines (46 in total) together with either galectin-1
or galectin-3. Many interactions with chemokines were identified, some of which were
specific for galectin-3, while others involved galectin-1 and galectin-3 [16]. Interestingly, the
interactions were glycan-independent and structural analyses of the galectin-3/CXCL12
galectokine confirmed that the chemokine directly bound galectin-3, opposite the glycan-
binding groove, and independent of the presence of a carbohydrate ligand [16]. Galectin-3,
but likely also other galectins, can bind cytokines in both a glycan-dependent and glycan-
independent manner. It is tempting to speculate that this controls the specific functionality
of the resulting galectokine, but this requires additional research. In the study by Eckhardt
et al., the formation of galectin-3/CXCL12 heterodimers hampered CXCL12-stimulated sig-
naling via the CXCR4 receptor and reduced chemotaxis and recruitment of leukocytes [16].
Similar to the galectin-3/IFN-γ galectokine, these findings support the concept that galec-
tokine formation is a mechanism that can modulate the immune response by regulating
cytokine availability and potency. Interestingly, Eckardt et al. suggested that the galectokine
did not prevent the binding of CXCL12 to CXCR4 but reduced the efficacy of triggering
downstream signals compared to CXCL12 alone. Possibly, this was associated with a
reduced ability of CXCL12 to interact with glycosaminoglycans that are involved in proper
chemokine presentation [16].

Current research indicates that the interactions of galectins with cytokines can af-
fect the ability of cytokines to activate receptor signaling. The effects appear to involve
different mechanisms and can occur dependently or independently of glycan binding.
Future research should further explore the reach and consequences of galectokines on the
immunoregulatory activity of cytokines.

4.3. Effect of Galectin/Cytokine Heterodimers on Galectin Function

While the previous section described how galectins could control the availability
and activity of cytokines, accumulating evidence indicates that cytokines also affect the
biological activity of galectins. The control of galectin function by cytokines appears to
be related to structural changes within the galectin CRD that occur upon heterodimer-
ization. For this, it is important to understand that glycan binding by galectins extends
beyond the core glycan binding groove in the CRD. This is exemplified by the observa-
tion that galectin-1 binds with higher affinity to more complex glycans than to individual
lactosamine units [131,132]. Thus, any obstruction or structural change inside or outside
the core binding groove can affect glycan affinity and specificity. As mentioned above,
we previously described that a non-endogenous chemokine-like peptide, anginex, could
form glycan-independent heterodimers with galectin-1 [124]. Additional research showed
that the interaction with anginex affected the binding affinity of galectin-1 for specific
glycans. Moreover, this was not restricted to galectin-1 as anginex could also alter the
glycan binding affinity of other galectins [126]. More recently, we described that the effect
on glycan-binding was also induced after heterodimerization of galectin-1 with chemokine
CXCL4 [17]. Like anginex, the heterodimer formation altered glycan-binding affinity, which
was accompanied by structural changes in the galectin-1 CRD [17]. This supports the
hypothesis that galectokines represent a mechanism to steer the glycan-binding affinity and
specificity of galectins. Additional evidence for this hypothesis was provided by Elantak
et al. They identified a specific region of the pre-B cell receptor (pre-BCR), i.e., the 5λ-UR
motif, as a binding partner of galectin-1 [133]. Like anginex and CXCL4, heterodimeriza-
tion occurred adjacent to the carbohydrate-binding site of galectin-1. Moreover, it was
found that the lactose-binding affinity of galectin-1 was four times lower in the presence of
5λ-UR [133]. Follow-up research by Bonzi and coworkers revealed that the galectin-1/pre-
BCR interaction induced local conformational changes in the carbohydrate-binding site
of galectin-1 accompanied by a reduction in the glycan binding affinity. Based on these
findings, the authors suggested that heterodimerization provided a mechanism to regulate
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pre-BCR clustering, the checkpoint of B-cell differentiation [134]. While the proposed mech-
anism awaits confirmation, we provided evidence that galectokine formation can exert
immunoregulatory functions. In the study describing the galectin-1/CXCL4 galectokine,
we also evaluated the effects of this galectokine on T cell apoptosis. Results indicated that
CXCL4 enhanced the apoptotic activity of galectin-1 on activated peripheral blood mononu-
clear cells (PBMCs), affecting mainly CD8+ T cells [17]. In the same study, galectin-9 was
found to heterodimerize with chemokine CCL5 which hampered the pro-apoptotic activity
of galectin-9 on activated PBMCs. In the latter case, CD4+ T cells were particularly suscep-
tible to the effects of the galectin-9/CCL5 galectokine [17]. These findings suggested that
specific galectokines trigger opposite effects in specific immune cells.

From all the above, an immunomodulatory mechanism emerges in which galectokine
formation can fine-tune the glycan-binding affinity of galectins. Furthermore, since glycan-
binding is at the core of galectin function, heterodimerization can be hypothesized to
represent a novel mechanism underlying the diversification of galectin function.

5. Summary and Future Perspectives

As described in the current review, there is ample evidence of a reciprocal relationship
between galectins and cytokines. This relationship extends beyond transcriptional regula-
tion as galectins and cytokines have been found to form heterodimers. These heterodimers,
or galectokines, display functional activity towards different immune cells. While the width
and reach of these galectokines are currently unknown, the available literature suggests
that the interaction between galectins and cytokines provides a mechanism to regulate
and/or fine-tune the immune response. Indeed, evidence shows that specific galectokines
can either serve as a mechanism to stimulate or inhibit specific immune cell recruitment and
functionality [15–17]. At the same time, many outstanding questions must be answered to
better understand whether galectokines contribute to immune homeostasis. An important
issue to address is the width of galectin-cytokine interactions. We, as well as Eckhardt and
colleagues, identified several different galectin-cytokine heterodimers [16,17]. However,
heterodimer formation between galectins and cytokines has thus far only been described
for galectin-1, galectin-3, and galectin-9. Since galectins share structural similarities, it
can be anticipated that other galectins could bind cytokines. In support of this, we did
show that the cytokine-based peptide anginex can also interact with galectin-2, galectin-7,
and the N-terminal CRDs of galectin-8 and galectin-9 [126]. Further insight into the full
spectrum of galectin-cytokine heterodimers thus requires additional research.

Identifying additional galectokines can also shed light on the binding requirements
that underlie galectin-cytokine heterodimer formation. As Gordon-Alonso et al. show,
cytokine glycosylation can be involved in galectokine formation [15]. Since several cy-
tokines are known to be glycosylated [129,130], it could be hypothesized that the addition
or removal of glycans provides a way to regulate cytokine availability and/or activity by
the actions of galectins. At the same time, members of the chemokine subfamily appear to
be less frequently glycosylated [135], and recent findings indeed confirm that galectins and
chemokines can interact without the involvement of glycans. While a better understanding
of the binding characteristics and requirements of such glycan-independent interactions
still requires further research, some relevant insights have been gained. For example, based
on NMR analyses and in silico docking, Eckhardt et al. found that residues in the β6,
β8, and β9 strands of galectin-3 interacted with the β1 and β2 strands of CXCL12, while
residues in β6, and the loop between β4 and β5, interact with residues in the CXCL12 he-
lix [16]. Regarding the galectin-1/CXCL4 heterodimer, the β6 and β9 strands of galectin-1
mainly interacted with the β1 and β2 strands of CXCL4, while the strands β8 and β9
were found to interact with the C-terminal helix of CXCL4. These findings suggest the
presence of both common and specific interaction sites. Given the high structural homology
between the chemokines of the CXC family, it appears feasible that galectin-1 has additional
chemokine binding partners. The observed non-glycan interactions occur outside the
core glycan-binding domain and, therefore, do not block glycan binding. Instead, these
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glycan-independent interactions appear to induce structural changes that can allosterically
modulate the glycan-binding affinity and specificity of galectins. Obtaining additional
structural information from other galectin-cytokine heterodimers in the future will increase
our understanding of the common and distinct requirements of galectokine formation and
how this affects galectin glycan-binding and function.

Another important issue to address involves the biological activity of galectokines
in a complex microenvironment. This is especially relevant since galectins and cytokines
have also been shown to form heterodimers within their own family, affecting their activ-
ity [136–140]. Given their binding promiscuity, it is likely that the extracellular microenvi-
ronment contains a complex balance of galectins, cytokines, potential homodimers, and
heterodimers, as well as galectokines. Unraveling the biological consequences of such
promiscuous relationships represents a significant challenge for future research. From the
currently available data, different functional mechanisms have been identified or can be
proposed (see Figure 3). It can be anticipated that such mechanisms occur simultaneously
in vivo and depend on multiple factors, including the availability and concentration of
galectins and cytokines, specific glycoconjugates and receptors, and the presence of dif-
ferent target cells. Untangling such complex networks will provide essential information
regarding immunomodulation, both in physiological and pathological conditions. The
latter is important because it could help to improve current immunotherapeutic efforts or
to develop novel therapeutic approaches.
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Figure 3. Overview of the reciprocal relationships between galectins and cytokines and the functional
consequences of galectin-cytokine interactions. (a) Illustration showing the reciprocal expression regula-
tion of galectins and cytokines. (b) Illustration depicting the different interactions between galectins and
cytokines that have been reported in the literature. This ranges from homotypic interactions within each



Biomolecules 2022, 12, 1286 13 of 18

family (left panel) to heterotypic interactions between members of a specific family (middle panel) as
well as heterotypic interactions between members of both families, i.e., galectokines (right panel).
(c) Illustration of the different functional effects of galectokines. (I) Galectins in the extracellular matrix
can capture/scavenge cytokines, thereby hampering cytokine-mediated signaling. (II) Galectin-
cytokine interactions can affect the direct binding of cytokines to their receptor, thereby affecting the
activity of receptor signaling. (III + IV) Galectin-cytokine interactions can hamper the formation of
other functional homo- and/or heterodimers, thereby interfering with the activity of these dimers in
e.g., receptor dimerization/signaling. (V) Galectin-cytokine interactions can alter glycan-binding of
galectins which might trigger translocation of the heterodimer to other receptors or alter interactions
of cells with the microenvironment or with other cells.

Finally, the formation of galectin-chemokine heterodimers has previously been referred
to as “the marriage of chemokines and galectins” [8]. Based on the current findings, it can
be concluded that this marriage has-at the very least-an extremely “open” character, given
the promiscuous relationships between galectins and cytokines/chemokines. Nevertheless,
it is a relationship that holds great promise as it adds a novel regulatory layer to immune
homeostasis and provides opportunities for (immuno)therapeutic interventions in case
immune homeostasis has gone awry.
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